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SIGNIFICANCE AND EXPLANATION

The singular parabolic equations treated here serve as a model of heat
conduction in processes where a change of phase occurs, such as water-ice,
solidification of alloys, melting of metals.

Usually solutions of boundary value problems associated with these
equations are found in a global sense, i.e. they are defined as equivalence
classes in certain Sobolev spaces. It is of interest to decide whether
they may be defined pointwise and if they possess some local regularity
such as continuity.

In this paper we prove that global (weak) solutions are in fact con-
tinuous. Moreover we study under what circumstances the continuity can be

extended up to the boundary of the domain where the process takes place.

i .
| . N
f Just ficotion '
.‘_-“»—_
Ry B
e LT T e
i aast Fooot (‘Tl/ —_—
VAT RR S I N i ~ s
! o
!
;
LY s,

The responsibility for the wording and views expressed in this descriptive
summary lies with MRC, and not with the author of this report.




CONTINUITY OF WEAK SOLUTIONS
TO CERTAIN SINGULAR PARABOLIC EQUATIONS

Emmanuele Di Benedetto

1. Introduction:

In this paper we study the continuity of weak solutions of parabolic

"equations,” with principal part in divergence form, of the type
(1.1) L8 - aiv 3,090 + bt 0 0

. . . N+1 .
in the sense of distributions over a domain Q in TR

Here B(+) represents a maximal monotone graph in R x R such that 0 ¢ B8(0),

+ . 2N+ . 1
:5 is a map from R2N 2 into ]RN and b maps R 2 into R,

Beside their intrinsic igieresfjﬂinciﬁ;iéhé such as (l.l) arise as a model
to a variety of diffusion problems. In particular they comprehend in a unify- h
ing scheme, free-boundary problems of different nature. We mention specifically
problems of fast chemical reaction [5, 8, 9], diffusion in porous media
f1, 3, 4, 13, 20, 27), diffusion in porous media of partially saturated gas
(14, 25], problems of diffusion involving change of phase of Stefan type
(1, &, 13, 16, 18, 20, 28].

Here we deal with the case in which g(+) has a jump at the origin. More

precisely we assume §(») 1is given by

Bl(r) r>0
(1.2) B(r) = [-v,0] r=20
Bz(r) -V r <o

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041.
This materrial is based upon work supported by the National Science Foundation
under Grant No. MCS78-09525 AOl.
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where v > 0 is a given constant and Bi(-) i =1, 2, are monotone increasing

functions in their respective domain of definition, a.e. differentiable and

(1.3) 0 <a, <Bifr) Za

0 i=1, 2

l ’

for two positive constants ao, ul.

We introduce some notation and make precise the meaning of solution of
(1.1).
Let  be a bounded domain in BN of boundary 92 and for 0 < T < =

let Q_ = Qx (0,T], Q(t) = @ x {t}, s, = U 3 x {t}, T = Sp U 2(0).
N O<t<T

For gq, r > 1 we denote by Lq r(QT) the Banach space of those measurable
r

functions mapping QT + R, with norm defined by

r T Y
llwl =/ Jlull  (oat
q'r’QT 0 qd,
where
4 q
llu | (t) = [ Jux,t)|Pax .
q,Q 9}

When gq=r =2, L (2.) coincides with the Hilbert space LZ(QT) whose

inner product (°¢,°*) generates the norm

2'QT ”. ”2’QT = ”. ”2’2,9'1“

Let W;'O(QT) denote the Hilbert space with inner product

N
(U,V) + E (E_ —§_Y~

3%, ' %)) '

T i=l i i 2,QT

while w;’l(QT) denotes the Hilbert space with inner product

(u,v) 1.1 = (u,v) + (77, 77) .
W, (QT) W
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Here éﬁL ' %% denote generalized derivatives. With W;'I(QT) we denote the
i
. 1 .
space of those elements in W;' (2,) whose trace on 3Q x (0,T] 1is zero.

T
Let V;'O(QT) denote the Banach space of functions such that the map

t » u(e,t) is continuous with respect to

|2 q and the norm is given by
,

2 2 2
lul 1 4 = swe Jlue,o |+ v '
v2' (QT) 0<t<T 2,0 2,QT
where
2 N
- du du
|[qu ”2 a - 'Zl Gx, PR :
QU i= i i 2,0

T

From (1.2) it follows that r » B(r) is a relation in R x R, whose

inverse 6_1(-) is a function.

. 1,1
Definition: By a weak solution of (1.1) in QT we mean a function ue W.' ()

2 T
defined by

where w is a function defined in QT such that
we B(u) ,

the inclusion being intended in the sense of the graphs, and w and u satisfy
t t 3

(1.4) [ wixte(x,7)ax . +ft fQ{-w(x,T)a—tw(x,T) +

Q@ 0 0

+ g(x,T,u,vxu) * U + b(x,7,u,7 u)¢}dxdr = 0

(-]
for all ¢ - w;'l(oT), and all intervals [to,t] c (0,T).
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If u e V;'O(Q ) is solution of a boundary value problem associated with

(1.1), then it satisfies (1.4), the boundary conditions being specified separ-
ately. We remark that if in (1.4) we want to allow t0 = 0, then along with .
u{x,0) = uo(x), the selection wo(x) c B(uo(x)) must be given. A common

device consists in prescribing uo(x) # 0 a.e. in Q so that S(uo(x)) is

unambiguously a.e. defined in Q.

We are not concerned here with the existence of weak solutions of (1.1),
for which we refer to {1, 5, 6, 16, 18, 20]. Our results are local in nature and

descent only from identity (1.4), so that we need not associate (1.1) with

a particular boundary value problem.

Our goal is to prove that a weak solution of (1.1) is continuous in QT.

For this we introduce the auxiliary function

8, (u{x,t)) , on [u > O]

vix,t) = Bo(u(x,t)) = o] ., on [u= 0] .

Bz(u(xlt)) I3 on [u < 0] ’

and set

wix,t) = v{x,t) ~ v(x,t)xlv < 0] ,
where y(x,t) > 0 1is given by

v ' (x,t) ¢ (v < 0}
vix,t) =
-w(x,t) ' (x,t) ¢ [v = 0] ’

and x(7) denotes the characteristic function of the set .
By virtue of (1.3), if u ¢ wé'l(QT) then also v ¢ Wp''(Q), and it will

be ~nough to show the continuity of v in QT.




Setting

N
a(x,t,v,va)

-> -1 -1
alx,t By (V)Y By (V)

-1 -1
b(xlt:V:VxV) P(xltlso (v) leBo {(v)) ’

identity (1.4) can be rewritten as

t t
(1.5) f (vix,1) =v(x,T)x[v < 0l (x,T)dx + f f {-(v(x,1) =v(x,T)x[v < 0]) *

Q tO to Q

&p >
vl a(x,‘r,v,va) . vxw + b(x,T,v,vaW}dxdT =0

Q
W ¢ w;'l(QT) and all intervals [to,t] c (0,T].

The above can be viewed as the weak formulation of
3 . . 'N7e)
{1.6) §E-B(v) - div a(x,t,v,va) + b(x,t,v,va) 30 in D (“T)

where B(*) is the maximal monotone graph

r r >0
(1.7) B(r) = [0,-V] r=20
r - v r <0 .

In what follows we will assume 8(+*) is given as in (1.7).
Throughout the paper we will make the following assumptions on the

. >
coefficients a = (al, ayr ceey aN) and b.

- N+1 .
[AI] ai,bg C[QTxR ] , 1i=1,2, ..., N

> > 2
(A)) a; (x,t,v,p)p; 2 CotlvD P = ¢ (x,t)

N
e~ 2

i=1

s o+ o e xe o e e o . e s e o
P R R .
-
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la, (x,t,v,B) | iuo((vl)'BI te l,t) , i=1,2, e N
b, B < u (VDB + v )

+ + . \ . s
where CO(°): R *R is continuous, decreasing, and strictly positive

+ + X . . .
Ui(°): R R are continuous and increasing, i =0, 1,

and the ¢ i=0, 1, 2 are non-negative and satisfy

el s,
1 2q,2r,QT 2

Here My is a given constant and g, r are positive numbers linked by
Ledoy oy
r 29
- - -
~ N A 1
g ¢ 7 - Kl) ' J , T € 1= < ' ] , 0 < Ky < 1, for N > 2

1 1 1
T-x, ' I-2x ]'0<K1<5’f°rN=l
1

We can now state our main result.

Theorem l: Let [All - [A2] hold. Then every essentially bounded weak solution

u of (1.1) is continuous in QT.

If (1.1) is associated with an initial boundary value problem of Dirichlet
or Neumann type then under suitable assumptions on the boundary conditions the
continuity of u can be extended to the closure of QT' For the precise state-

ment of these results we refer to Section 5 Theorem 5.1, 5.2 and 5.3.

Remarks: (i) By the local nature of our arguments, in Theorem 1, the function u

nerd not be defined in a cylindrical domain, since we can always reduce to this
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case by selecting in (1.4) test functions supported in cylindrical domains.

Hence for the purpose of proving Theorem 1 one need only to assume that u is,

1,1

2,loc(q) *

locally essentially bounded in Q and that u e W

(ii) It is of interest to know if Theorem 1 holds under the assumptions

l'O(Q Y. A step in this

that u 1is essentially bounded in QT and u € V2 T

direction can be found in Section 6.
(iii) Assumptions [Al] -[A2] are the same to those imposed in (18] to study
the Holder continuity of weak solutions of (l1.1) with B(r) = r. In this con-

nection in [22, 23] it is observed that the order of summability p, r are

optimal.

If r » R(x) 1is a monotone a.e. differentiable function satisfying (1.3),
then the local Holder continuity of the solution follows from the results of
[{18]. See also [8, 9] for the corresponding free-boundary problems.

We briefly comment on the regularity results at our knowledge available
when B8(-) is monotone and singular or degenerate.

For N=1 and b = 0, Fasano, Primicerio and Kamin showed in {[15] that,
under suitable assumptions on ;(x,t,u,qu), a generalized solution of (1.1) is

locally Lipschitz=continuous in QT. Holder estimates where obtained by Cannon,

Henry, Kotlov [10].

In [14] a similar result is obtained for a degenerate g{(.) of the form

Bl(r) r <0

0 rz_o ’

B(r) =

where 81(-) satisfies (1.3).

For N > 1, Caffarelli and Friedman (3] proved the continuity of nonnegative

weak solutions of




—u -Au=0 , 0<aqa < 1 .

This result has been improved to the Holder continuity by the same authors
in [4].

Recently Caffarelli and Evans [2] have shown that weak solutions of

P .
§E'B(u) - Au » O 1in QT

for B(*) given by

Blr r>0
glr) = [-v,0] r=20
162r r<o ,

B., 1 =1, 2 positive constants, are continuous. Their method of proof relies
strongly on the properties of the Laplacian operator and the absence of lower

order terms.

Our approach is completely different from the one in [2], and it is a
natural continuation of ideas exposed in [12]. The method consists of a
suitable modification of the parabolic version of the De Giorgi's estimates, as
appearing in Ladijzenskaja-~Solonnikov-Ural'tzeva [18].
The main idea of the proof can be described somehow euristically as follows.
The function (x,t) > u(x,t) can be modified in a set of measure zero to yield
1,1

a continuous representative out of the equivalence class u ¢ W2 (QT) if for

every (xo,to) - Q there exists a family of nested and shrinking cylinders

T
Qn(xo,to) around (xo,to), such that the essential oscillation vy of u in

Qn(xo,to), tends to zero as n -+ » in a way determined by the operator in (l1.1)

and the data.




The statement that a certain quantity, or function, depends upon the data

)y v.y

will mean that it can be determined in terms of N, CO(-), e (), o i

o]

-

i=29,1, 2, "y 2, K the jump v of §5(+) and the essential bound of u

1[
The paper is organizecd as follows. Section 2 contains some preliminary

material and the derivation of a system of integral inequalities which will be

the main tool in the proof of the theorem. Sections 3 and 4 are devoted to the

proof of Theorem 1. The continuity up to the boundary is discussed ir Section 5.

. . . . 1 - . .
Finally in section 6 we show that if u ¢ Vz’o(uT) is a weak solution of
. , 1 L .
(1.1) which can be obtained as weak V2’O(Sw)~llm1t of certain approximations

of (1.1) (in a sense to be made precise) then in fact the convergence takes
place in the topology of the uniform convergence over compacts of ;T'

Since the arguments are technically heavy and the symbolism is gquite
complicated, an effort has been made to render the paper as self-contained as
possible.

In view of this we have reproduced certain calculations already known from
the literature.

I would like to thank M. Crandall for several helpful discussions on the

subject.
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2. Preliminary material and integral inequalities:

This section is devoted to the derivation of a system of integral inequal-~
ities which will be the main tool in the proof of Theorem 1.

(2.) and k ¢ R. Set

Let v e e ‘

L
q,r

(v - k)+ = max{ (v - k):0} ; (v - k) = max{-(v - X);0} .

+
It is obvious that (v - k)~ ¢ Lq r(QT) and it is known that if

’
Wl'1

VvV € 2

+
(QT) so does (v - k)~-, (see [19]).
With B(R) we denote a ball of radius R in EN and if x > v(x) 1is

defined in £, and B(R) ¢  we set

{x ¢ B(R)|v(x) > k}

)
"

k,R

it

A; R {x e B(R)|v(x) <k} .
Also let Ky denote the measure of the surface of the unit sphere so that
N
meas B(R) = KNR .

From now on (x,t) = v{(x,t) will denote a weak solution of (1.6), and M

is a positive real number such that

ess sup ]v[ <M .

o

-——

1 . We will think of (x,t) - v(x,t) as an arbitrarily selected and fixed
representative out of the equivalence class v, so that the map

' (x,t) > v(x,t) ¢ R 1is well defined wv(x,t) e QT

N We will derive a system of inequalities for v by making particular

selections of the test function ¢ in the identity (1.5).

, . 1,1
First we observe that since v - W2' (HT), (1.5) can be rewritten as




t t

(2.1) - f vix,1)x[v < 0l dx +f f vix,t)x[v < 0] a—at-\o dxdr +
%) to t0 Q
t 3 >
+ f f {z=—ve+ alx,7,v,V v) « V¢ + bix,T7,v,Y vipgldxdr = 0
€ Q ot X X b
0

°1
W o€ W2'1(QT), and any interval [to,t] < (0,T].

Next we construct the test functions in (2.1).

Let o., 0, € (0,1) and consider the concentric balls B(R) and B(R - 01R),

1l 2
and the cylinders Q(R,A) = B(R) x [to,tO + A} and Q(R - olR,A - czx) =
B(R - olR) x [tO + 02A,to + A}, A > 0.

Define cutoff functions in Q(R,A) as follows

(a) £ e C [Q(R,\)] such that g(x,t)] =0 V¥t [tk + A,

dB(R) 0

C(x,to) =0 V¥x ¢ B(R) and r(x,t) =1, (x,t) ¢ Q(R - ¢
1 |a 1

ool < @n .

3
R,A - 02)\)1 EC 301

1
IVXEI j.(olR)
(b) ¢ € C:(B(R)) such that ¢(x) =1, x € B(R ~ o,R), [Vg| < (olR)_l.

For any cylinder Q(R,}} c QT we make the following selections of test

function in (2.1)
¢=+(v - k)= ¢
where k ¢ R satisfies

(2.2) ess sup (v - k)i <34
Q(R,})

for some § > 0 to be selected, and (x,t) - r(x,t) is either as in (a) or as

in (b).

For simplicity of notation we set




t t
-J v(x,r)xlvjpl[i(v-k)tlczdx + [ [ vix,1)x[ve0] é% [:(v-k):gzldxdT
0

t Q
0 to 0

+
= - ¢-(k,t lth) ’ t e (tolt

0 + 1))

0

and transform and estimate the remaining parts of (2.1) as follows

t

2 2

t
+ +.2
I = j f té%—v(v - k)= ¢ dxdr = %-f f g% [(v - k)=-1" ¢° dxdt =
t, 0

[All - [Azl-

[ ]
it

+

v

0"

2
v -0l @

tO.Q

t t +.2 3
-/ [ 1v-x17¢ 3T ¢ dxar .
t. 9

2,4 to 0

To estimate the last two terms in (2.1) we take in account the assumptions

t

tO

N t
1
i=1 tO N

t . N
f f a(x,7,v,V_v)[+(v - k)-] « V ° dxdr >
t O X - X

0

t
+2
[ e deblv v =K ¢

tO

Oy

We have

[ alx,1,v,0 V) +V_[+(v - k)2 gz]dxdT =
- X X =

3 + 2
ai(x'Tlvrva) 5;:‘ [:(V - k)-Jz dxdt +

t
+
Zaxar - [ [ eoexiw - 07 > ojaxar
t Q

0

t
+ +
2 jt f\ “O(,V'),VX(V - k)-‘(V - k)- L,ch[dxdT -

2 [

0

t

[ v

1

(v - K)2 o|v_z]axdt

I8
X




t t
. + Lo g
J2 = f b(x,[,v,vxv)[j(v -k)—]L2 dxdt > - f f ul(IVI)QT(V - k):‘“ .

to - tO :

t

+ 2 o2
(v - k)~ g% dxdt ~ [ ¥ (v = k)= o7 dxd-
t, ©

Since ess sup |v| <M, from the assumptions on CO(-) and .i(-) we £0C thiat
\_!T

Co(lv]) :_CO(M), ui(|v|) < ni(M), i =20, 1. From the Cauchy inequality

s_lbz

2
2ab < ga  + we have

t
2 jt jQ uo(M)lvx(v_k)fl (v - k)7 r,’,vx‘,!dxm <

0
t t
+ -12 2.
<e f f ]Vx(v - k)-]2 ;2 dxdt + ¢ uO(M) f f [(v -~ k)t]z}vxa] axad:
" ¢ )
to 3 tO 1%
and
t t
+ +. 2 2
2 [ £ v = =]V g axar <[ [ v -3 {er.i axd: +
o 2
t, ° t,
t
+f[ ¢f 23 rv - 1~ o)axar
t, ©

In estimating the integrals in J2 we recall (2.2), so that combining ti.

estimates for Jl and J, we obtain




t
: N . - +2 2
JpF oy Ty - = & ) / [ W v - k)= T dxdr -
t i
0
t
-1 2, +.2(. 2., .
- (e g+ 1) [ (v = x=1%v ~{“dxar -
t S
0 .
t
2, 2 +
-] T e+ v, eIy - k)= # 0)dxdr
t, ©

Next we estimate the last integral above in terms of the measure of the scot

+
[(v = k)= » 0], by emplcying the assumption [A2]. We sct
+ +
A= (1) T {x . B(R! (v - x)=(x,T) > 0} .
X,R

Then by the Holder inequality

* . 2. 2 +
g =1 b + o8, + ¥ 1o xl(v - k)= > 0ldxdr < .
t o
o @
é-l ; } —-
2 ¢ + q - |
< max[1,8] ||j¢, + ¥, + ¢ | [ meas aZ _(1)] dr )
= 0 2 N K, R
q,c, T 0
Setting
25(1 + x) 28 (1 + «) 2
(2.3) q = —37—‘~i— ;¥ = ——7———L— PoKE TR
q-1 r -1
f r 2 (140)
t - r
3% < max[1,6] lfe, + ¥, + 2 [ [(meas ar (019 ar
- ' 0 T2 Tllato . k/R
gq,x, T 0

Since 1 + EL =1 -~ we have

o 1

r 29

-14-




. w—— = — g

N
29

(2.4) %+

azZ

and the admissible range of r and q is

2N 5 N
q - (2, - 2] ¢ Yo [2,) for N >3
(2.5) g+« (2, , re« (2, for N =2

In the estimate of J1 + J2 we choose

CO(M) CO(M)
(2.6) € = 2 6=m1n{m, 1}

so that collecting all the previous estimates we obtain the inequalities

+ 2 t +2 2
Tev =x)=gl () +f f v (v - 5)=|" ¢% axdr <
2,0 t, *®
!
+ 2 to+ + 2 2 3
cllw=-nTal @y v [t =027 dv el + o] 5 ehaxar +
9 2
2, t,
to+\ r -f_— (1+«)
+y ﬂ: [meas Ai'R(r)]q drt + ¢t(k.to,f,c), vt . [fo,to+x] ,

0

where Yy 1is a constant depending only upon the data.

These inequalities are valid for every cylinder Q(R,}) c QT and every

k - R, satisfying (2.2) with the choice (2.6) of the parameter §.




e Py - —

i 17 we select the cutoff function (x,t) » r(x,t) as in (a) we see that

there exists a constant vy, dependent only upon the data, such that

.2
(2.7) A SR BN -
VZ [B(R - GlR) x (to + 02“’to + )]
2
- -1, . +
;'\[(OlR) ’ * (Gak) l]|((V - k)- “ +
. - 2,0(R, ")
t 4 r | 3~(1+K)
0 I
b T s T
D jt [meas Ak'R(l)] d‘f +
0 )
+ sup 'a(k‘to‘t) .

tnho.t0+k]

+ . . . + .
where ?g(k,to,t) coincides with ¢-(k,to,t,c) if z(x,t) 1is selected as
' in (a).

Choosing now x + (X} as in (b} we have

2 2
+ +
’ (2.8) fwv-x=11 + HVx(v-k)-H z
i ~ - - .
; 2,A k,R-clR(t) 2,0(R clR,»)
!
. 2 -2 + 2
o < lew ==, +1(0R) v - 0= +
' 2,Ac A
) 'Ak,R(tO) 2,Q(R,})
)
E t0+i r % (1+x)
. + q + .
) +y {: [meas Ap o(1)17 dr +O0plkity,t), € [t t o+
! 0
Q with the obvious definition of ®g(k,to,t). .
[ 3
Q Roughly speaking, inequalities (2.7) - (2.8) supply some local control on ;
i ,
1
B¥ that part of the graph of v which lies above (below) the hyperplane v = k.
}

-16-
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e T . . n—— ! - a2

P,
-

. ¥ .

Consider a region 0 c QT such that
meas((x,t) € Olvix,t) <0] =0 .

Then for every cylinder Q(p,)) < O, ¢t(k,to,t) 2 0, hence by choosing
the cutoff function ¢¢(x,t) as in (a) and as in (b), we see that tre function:
(x,t) =+ (v - k):(x,t) satisfy inequalities (7.1) - (7.2) of (18] page 1ll0.
By virtue of the embedding theorem 7.1 of [18] page 120, this implies that
(x,t) > v(x,t) is HOlder continuous in every region (' c (). An analogous
argument holds for regions ( such that meas[(x,t) ¢ O|v(x,t) > 0] = O.

Because of the presence of the term ¢t(k,to,t), we do not expect that
inequalities (2.7) - (2.8) imply the continuvity of the solution, without
additional informations contained in the identity (2.1). This is the role of
the next two lemmas.

"

+ ) 2
Let 6 ¢ R and consider the cylinders Q(R,GRZ) = B(R) x[to,to ++=R7] and

2. _ 2
Q(R - clR,aR ) 2 B(R - clR) X [to,t + 6R7].

0

Lemma 2.1. Let 7(x) be a cutoff function in Q(R,eRz) chosen as in (b). Tiher

there exists a constant C(M,8,v) such that
2 2

dxdt <

ff 2 |va[ L7 (x)dxdt <

Q(RleR ) C‘l

C(M,6,v) ‘ N
2

. Ay 2 ‘ .
Proof: In (2.1) select the test function ¢ = e VC (x), where ' > 0 will i

2
chosen later. For all t «¢ [to,t + 8R7] we have

0
t t ~ S
| 3 o- ~wv o2
- f vix,t)x[v £ 0ly dx | - f f vix,1)x[v < 0] ﬁz-v e DT (x)dxd:
y 0
§ to to
- t— t -
=) g 3 -\ o
= - [ vixxiv < ole Y 2% (x)dx v [ [ 5 e Voo e T
0 t t. o~ T
0 0

-17-
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- Tle,l

e

FED 11
t -
This terwr, and the term 'f f ft vy dxdr[, can uwe easily domirated in
t. oo °
0
- N . = .
terms of C»JR where C depends upon M, ¢ and V.
i

on the ather hand using the assumptions [All - [Ajl, standard calculations

vield
t
&; f‘ falx,r,v," VIV ¢ + b(x,1,v,7 v)¥idxdr 2
aQ
t Y 2 2
e o - e = ) a [n e [V v]® ¢f(x)dxdr -
0
t t
- e‘M f (e + ¢ )LZ(X)dxdT - ZC\M f f ¢ ClVCIdXdI -
‘. 0 2 . 1
to 2 tO 2

- é ene’ f f [v¢]? axdt
%o

Selectingy ¢ = “I(M) and i = :—%ﬁT ul(M) we conclude that there exists a

constant é depending upon M such that

s [/ 5 {valz 22 (x) dxdr :_EKNRN +
;:‘(F\:"R )

¢ +oR° to+’*R2 )
© 2, 2 2 \
v 1o (xydxdr + / [ |vg]” axds (

t ’ t o
0 0 :

-

-1 . . .
Ve recall that !7:[ < (3. R) and treat the integral involving the '

1
1 =0, 1, 2 as rrieviously, to obtain
. 2 2 C(M N N
el oo Sl g
SR, F) Jl
~18-
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This inequality will be employed to prove the following lemma.

+ +
Lemma 2.2: Let k ¢« R, > ess sup (v = k) and 0 < n <y

2
Q(R,06R")
Set
vix,t) = ent S " = max Ln H n ; O ’
b= (v=Rk +0 uo= (v-R) +0n
then there exists a constant C = C(8) such that for all ¢t ¢ [to,to + eRZ]
j’ Wi, tydx < f wz(x,to)dx +
B(R-OlR) B(R)
Nk
[} U R N
—— (1 + fn = e .
+ 012 (1 n = Y (1 + nz )KNR

Remark: For simplicity of notation we will use the same symbol ¢ for

vix,t) and @(v(x,t)). In what follows ' will mean g%-i.

Proof: In (2.1) we select ¢ = (wz) gz(x), where ¢ (x) 1is chosen as in

Ol 1]
(b). It is apparent that ¢ ¢ W2’1(QT), and that (y°) = 2(1 + y) (¥ )2.

1
+
Since (@2) vanishes at those points (x,t) ¢ QT where (v - k) <n, and

n > 0, the terms involving v(x,t)x(v < 0] in (2.1) does not give any

contribution. The term involving é%-v gives

t '

[ ] 2 v(wz) 52(X)dxdr = wz(x,r)cz(x)dx
3t |

tO & Q t

We estimate the remaining terms as follows

-19-
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e ct———

4 t' - 1
! Pl asnvrw2a s en? v 2o+ w0f 1?0 laxar >
' t ..
0
|
L2, () f f (1 + Q)!va;'; (;2(x)dxd1: -
to .l
¢ 2 2
~2f e+ en? ¢ odxar -
e
| . 1 1
o 2., . 2
- 4 0 {7 l\.x',](‘j(x)v |velaxar -
£, ©
t
2.0 2
% -5 e e D Y e axar >
i .
| il t(] -
| , eegen - f @+ 0]V g]” et axar -
| ‘ £, @
¢ 2 2 2., 2"
- FEDTH 000+ 02700 + ¢, 060 927 () Jdxdr -
t. -
; 0
i
' t
_ o)
-/ I Y Y wl|v oo 2 axar
. 0
P t.
>
L‘ For the lowsr order terms we have
'\' R , t 5
T bk, v,y v) (9 (_z(x)}dxch = 2, () [ ] .;.\,.|vxv’2 2% (x) dxdt
' + X t {
! n 0
!
' 1
H e 200 2
(‘? +f f ;Q(X’Y)(‘ Y} ¢ (x)dxdr .
i t
\ ¢
¥
] !
|
=20~ i
]
!

et e e, ST B




-

-
.

1 1
Since W¢'|V v[2 = wzlv WIwZIV v| we have
X x P

t 2 2
2o [ [ w7 v]® ot myaxndr <
£ Q
0

¢ . 2 2
<ef [ oa~+ v)[wal £ (x)dxdT +
t, &

t
. e—l4ui(M) [ wIva|2 2 (x)axdr .

Y/
tO

Collecting the previous estimates gives

t t 5 2
+ [2c () - 2¢] [ ] a~+ w)|vxw| £ (x)dxdt <

to tO Y]

[ o? Pax
9]

€ oy 2 2 2

<2 f [ AwHT@ e ney + el +ut ¢y det (x)dxdt +
t Q
0

t
+ (247t 4(4ug(M) + pi(M))]f / w{[vxvl2 22 (x) + ]chlz}dxdr .

tO Q

We select e = CO(M) and observe that since T <y BEANIES

’

and

3

Y < 4n %. Moreover we recall that }Vc| < (OlR)—l and lemma 2.1 in estimating

the last term in the inequality above. This yields the existence of a constant

C(M,v,08) such that




2
t_+6
S € § 0 CR )
2 i 1 2. .
f voooL {x)dx < n—E-(l + {n — ) Y f f ¢O + ;2 + ;l]oxdt
t, 1 ' n t B (R)
0
+ RN l <
N —
r 14r) (1) -1
= : —(14k) —(1+x)-
“EL’(’ +oan =) % J;Il- P H . ( )"q ) .
— 2 n ] ol Ty vy I N
1 | o q,r,Q
3
N+NK RN
K. N
N N J
Th.s proves tite lemma.
Remarks: (1) If X <~ 0 and - > ess sup (v - k)_, then an analogous lemna
3
holds for QR
- + | - -
(x,t) = n i ; 0 < n <,

o= v -k 4
The rroof is the same except for minor changes.

(i1) The proof shows that C(%) increcases with 6. We will use lemma 2.2

with O =~ -1 and C(7) vreplaced by C = C(1).
We rerort a lemma due to De Giorgi [11] which will be used as we proceed.

. } 1
Lemma 2.3 (De Gieorgi): Let v - wl(B(R)) and let k,! be real numbers such

that . = k. Then

RN+l
(2.9) (- - K)meas A <D [ (vvidx
. - s (B ' ‘ :
/R meas ( (R)‘Ak,k) A A

where D 1s a conitant dewending only upon the dimension N,




Inequality (2.9) holds for domains other than balls. We refer to [18,19]

for details noticing for later use that it is valid for convex domains.

N+1 °1,0

Finally if @ 1is a cylindrical domain in R , V2 (¢) denotes the
subspace of v;'O(Q) of functions whose trace is zero on the lateral boundary

of Q, equipped with the same norm as V;’O(Q).
The proof of the following embedding lemma can be found in [18]) page 74-77.

[+
Lemma 2.4: If v ¢ V;'O(Q) then v ¢ Lq r(Q) where q,r satisfy (2.4) =
—_— ’

(2.5). Moreover there exists a constant R depending only upon the dimension

N such that

(2.10) vl < 8lviey 4 .
q,r,Q VZ' (Q)
If g=1r =2 then
L
(2.11) [[v ] < Blmeas(|v| # 01 n o1V+? ‘v{ol o
2,9 v, Q)

‘ If v e v;'O(Q) then (2.10) is still valid. Moreover if p =r = 2 and
}
if Q = D ox (O'T)

. 1
o N+2

. (2.12) vl < cmeast|v] # 0] n "% |v| Lo

) 2,9 v, Q)

)

' N L

,{ where C = 26 + (T2 meas ¢ 1)V¥2,




' 3. The main proposition:

Throughout this section we let (xo,to) N QT tO > 0 and for R > O, QR
will cdenote the cylinder .
o = {|x -x| <R} x [t - R%,e ) .
R 0 0 0
. 1
et RO “ 3 be so small that QZR c QT' set
o}
+ - .
y =ess supv ; . = ess infv ,
Q Q
R
2RO 2 o

and denote with « any positive real number such that

+ -

2M > v > ess osc V =y - u .
o Q
2RO
For k + R and 0 < R < 2RO we set
+
ﬁ 0 ) = {(x,£) ¢ Q |vix, &) >k}

QR(k) = {(x,t) = :ijx,t) <k} .

Pinally we let s denote the smallest rcositive integer such that

2M :
(3_]) — ~ ¢ Sl"

.

ity

-

wnore 4 is the number introduced in (Z2.8).

The goal of this section is to prove the following result

c——~ -
e m .

i ' Proposition 3.1: Let « be any positive number such that
A 2M > & > ess Osc Vv
' 0
. “2R

. 0




Then there exist numbers s_¢ N, A, a > 1, h > 1, £. <1 such that

O rd
1
ess osc v < ol - 2
Q s _+A/y
R, , 0
h .
where R, = ¢ (2R )", provided that
¢}
Nk
= ai(zRo)z .
s +A/w

The numbers SO’ A, a, h, £, depend uniguely upon the data and not upon
nor w.

Without loss of generality we may assume that

(3.2) [ | <u .

If the reverse inequality holds the arguments are similar. Also we

will assume that

+ -
(3.3) ess o0osc V= - u > w R
0 2s-l
2R0
+ - N
and treat later the case y -y < .
— _s-1
2
Notice that (3.2} - (3.3) imply that
+ ia)
(3.4) b= _é. |£: + | >0
2 2

Observe moreover that we may assume

(W)
2s+l

() H S ess sup (v - (u + :é )~ >

0 2
Ro

-25-
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Indeed if (') 1is violated

) )

< +
2% 2s 1

. . + . .
and adding ess sup v on the left hand side and on the right hand side we

¥

R
0

obtain

1
s+
5 1

)

¢s5 osc v < w(l -

R

0

and Proposition 3.1 becomes trivial.

Proposition 3.1 will be a consequence of a series of lemmas which we state

and prove independently.

Lemma 3.1: There exists a number co depending only upon the data and

independent of  and R such that if

0
2k
1
N+2«k
meas Q_ (u + ——) <cC 1 K RN+2
R -0 N0 '
0 2
then either
Nk
(1) rsuosup (vo- | T =) < R2
i) o= osz sup (v \ < <R,
[ 2
0
3%
- - X 1
(11) meas O (., + —~—-=1) =0 .
R S 2
() <
2
fler S i number appearing in the assumptions [All - (2.




Proof of lemma 3.1:

Consider inequalities (2.7) for the function

(x,t) > (v=-k),

- - N . . .
Mo <k <uW o+ —~— in the cylinders QR ,O0<RZ< Ro. Notice that in view of (3.1)
2
- w
ess sup (v - k) <— < §
0 T 2f
R

so that the use of (2.7) for u < k <y + is is justified. :
2 I

, - 2 . .. . s
We estimate ®a(k,t0 - R ,to) in (2.7) by distinguishing the cases of

k<0 and k > 0. |
- 2 *I‘
If kX <0 then ¢a(k,t0 - R ,to) = 0. -
If k>0 we have
: t
. - 2 - 2 0
¢ (kot, - R,t) =-{ vix,0)xlv<0lv ¢“(x,1)dx -
a 0 0 - 2
Q t_-R
0
{
2 t0 t0 _
-k f vix,)x[v < 0Jz" (x,7)dx 5 * f 5 f v(x,)xIv < 01(v = k)
0 ty~R tyR° @
t
3 2 ° 5 - 2
— ¢ (x,7)dxdt + f f Vo v 7 (x,7)dxdtr <
3t 2 at -
t -R™ Q
0
‘o -3 o - 5 2
< 2v f f (v - k) — z(x,7)dxdt - v f f v {(x,T) — ¢ (x,t)dxdt .
- 2 3t 2 ot
t =R Q t -R Q
0 0
If (x,t) » ¢(x,t) 1is selected as in (a), Ct > 0 so that v Ct > 0 and

2V

- 2
b ket - RY,E

o =

2

6.R
2

f f (v - k) dxdt .
QR

-27~




Inequalities (2.7) now read

e s e e ———

2
(3.5) lv =107 | 5 <
v, [B(R=0 R)X (£ - (1=0,)R", £ )]

2
- -1 - .
<yloR? @R v m0T
2,0,

tO ) _:_1_ %(l+s<)
+ v f > {meas Ay R(1)] dt +
k t, 7R !

r 2RO (v -k dxdr .
- Q

R
1 ‘ - - w
Inequalities (3.5) hold for all u <k <y + —~ all Ul, 32 e (C,1)
2
. and all cylinders QR' 0 <R < RO.
Set
K R
0
R = — +
2 +2
n 2r1
R 3R
' = 0
R = — +
2 +4
n 2n
: and consider the cylinders QR and
v n
! S :f]x-x] <R}« {t -r,t}
) n 0 n 0 n 0
' 0 - - <R} - R® 1
| Q. {|x xol . TN
v
v S i e
i Cbhviousls
¢ = -
* cQ >
) "‘R n S 5
n+1 n




Construct smooth cutoff functions x -+ gn(x) as follows

n
[

(i) g, (x)

|x - x

(i) ¢ (x) =0 [x - x

O, 2 n n+l n

1i6)  |vg, 60| < MR

For simplicity of notation set

=, 4+
kl—u +2s.

Our purpose is to apply (3.5) to the pair of cylinders ¢ and Sn for the

R
n
decreasing levels
_ 1
kn_(kl-EH)+_nHln=llzl'°'l
2
which as easily verified satisfy
u j_kn i‘kl .
Set
-, 2
v,=/ [l =-k)1%axd: and
QR
n
to ) é' = #
z = f 5 [meas a R (t)17* dr
t ~-R n n
0 n

-t




e v e —

C—
. e

e — >
P ar o a——

C e
ey 4

. WL T

AS n > «

_ 1 - 2
v, v, = [(v = (k, = 5 H)]® dxdr
QR
9
2
2
(Jto _ % r
z -+ z = [meas 1 (1)) 7 dr .
& - H
n 1 Rg Akl > HiRy/2
Sy
Therefore the lemma will be proved if we can show that v, =2 = 0.
Claim: The numbers
g cm i
n H2RN+2 ! n RN !
6] o]

satisfy the recursion inequalities

-~ Sn l+ _.2— _2—
c2 N+2 N+2 14k
[1] Yo <R Y + Y z
~_5n
Cc2 1+k
(1) Zns1 = Th Yn 2, '
where
~ .12 2
C 2B Yo -

Here 3 1is the constant appearing in the embedding lemma 2.4, and

o)

o T max{v, (1 + y)(2M + 8) 1.

We remark that C depends only upon the data and the dimension N.




C e e ——

Proof of the claim:

We use here the method of [18) page 106.

t
O -

Pn = ft R2 [meas Ay +1’- +l(T)]dr P
0 n+l n n

and observe that
n+l \ 2
=2 _ 2
Pn < (kn - kn+l) yn - H yn )

n

By virtue of lemma 2.4 applied over the cylinder Qn we have

o -2 2
(3.6) A B e
Qn
2
—_ n n+1) Cn vl,o(= ) .
2 Qn
_ 2
Estimate of |(v - kn+l) Cnlvl,o(a .
2 n)
_ 2 _2
[v - k) gl . < ltve=x_ ) _ +
1,0 = . — n+l 1,0 ,=
vy Q) v, Q)
n
-2 1 2
+ 2 f_ [ v - kK 101719 ()| dxdr = JrE - Jrf )
Qn
For J(z) we have
n
(2) -1_n+4 _ -2 _ 2 .
3.0 2arg2 T [ [ = k)T (k= k) T <

Q

Ry

Set

+

p)dxar <




ntd

-

v ey .-

(1)

In order to estimate Jn

cvlinders 6

i

and QR . Notice that in thi
n

(o.R )72 = g2 2 (n+4) ; (0.R
2 n

[ tv -k

s connection

y T <RS2 ,

-2 l+x
+1)] dxdt + v 2z +

v2n+4 _
+ R2 f f (v - kn+l) dxdt <
o %
n
t0
+ l+k + ~
i.gg 22(n 4) nty zn+k + 3%-2“ 4 H f 5 [meas A (1)idr
Ro o o7 atl, 'n
Since
to - -2 (2n+1)2
f 2 [meas A R (1)1dt < (kn - kn+l) R R AN
t -R n+l' ' n H
0 0
sinte H < 2M + F, setting Yo = max{v, (1 + y)(2M + £)} above yields
8(1+24)Y 23(n+1) )
(1) 0 2 14K
3 < e {y  + RC 27}
n - R2H n 0 n
¢}
‘o . {1} (2)
Combining the estimates for Jn and Jn we have
+
i - }2 28y0f2“ ])3 2 1l+x
(3.7) (v ~k | S < e ——— {y 4+ R 2z }
+1 'n' 1,0 =, =
n R () Rgn no o

tstimate of Y We carry (3.7) in (3.6)

n+l:

obtain

and employ the estimate of

we use lnequalities (3.5) for the pair of

and

P

N

to




- =y

4 2 2
+__
2882, (2n+1)3 N+2 ) \ 2 2 L4 )
Yn+1 < 0 _y_n_ + y_n) 0 %n
- 2
H2 R2H H H2 H2
0
and dividing by Rg+2
2 2 Nk
. on 14— —_— R
Y < c2 v N+2 + YN+2 zl+K 0
n+l — H n n n H2 J
2 Nk RgK
Now if H < Ro r =5 < 1 and [I] is proved.
H

To prove [II] observe that

v 2
) ) %o : g T
n+l(kn - kn+l) = (kn - kn+l) f 5 [meas Ak R (1)) dr} <
t -R n+l" " n+l j
0 n+l J
_ 2
< vk e |l _ < by the embedding lemma 2.4 <
q,r.Qn
2
= |
S k) 1o
2 Qn

The last term is estimated in (3.7) so that [II] follow at once.

Proof of lemma 3.1 concluded:

By lemma 5.7 of [18]) page 96, there exists a number ' ~ 0 such that if

then the recursion inequalities [I] ~ [II] imply that Yn’ :“ 0 as n >,

From (18] setting




 — -

Ly 2 I3 1
d = mint N+ 31 - '
the number Y is given by
{ N+2 5 (N+I) , 14 5 ?
2 24 / K rd
L= min l -}-{- 2 ; —}i\— \ 2 \(
. 2¢ 2C /
| / J
2
. 1 H .
Now since -~ = TN (0,1) and — < 1, above gives
- ~
/ 1“: j -5 (N+2) -5 ] 1
2 < 4
d = - ; ) -( L min 2 d ' ZVd ©ow
1+ - 0 25=,+2 -
\ |
where  (U) has been used.  Set:
1+
/ 5 [ e s
~ K_ .
SN -:;15-: min {2 24, 2~
’ \2“ C
L
and notice that ¢ depends only upon the data and not upon RO nor .
2%
o
2<1+N
The lemma follows if Y, S S i.e, if
— n O .
¥4
I l g - 2
¥, PR o LA +2S))]dxd1
HF HR, 2,
l 0
2% +N
2
meas 0 (L4 == = 1 i 1 }\N+2_
N2 5 Qg U s N$2 T "N 0
0 - c 0
trom onow on, for csimplicity of notation we set
2« + 0N
1 b
o= 3.‘v——~— , o = .
1
-14-
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Ns

and remark that b depends only upon the data and not upon w nor

Ro.

Remark: By selecting in inequalities (2.7) the constant Yy large enough,
we see that in [I] - [II] the constant ¢ can be made as large as we please

so that without loss of generality we might assume that

C b(
o¥ =

(S 1ol

Suppose now that the assumption of lemma 3.1 fails; then since

W -
v vl
2 2
+ + W N+2 N+2
meas Q_ (u - — ) <« _R -8 k_R .
RO S N O 0 N 'O
= (- e Rg+2 )

+
lemma 3.2: Suppose that Xk ¢ IR and that

+ N+2
meas Q_ (k) < (1L - 8 )« R R
RO 0" N O

then for every a ¢« (0,90), there exists

2 2
T € [to Ro,to - GROI '
such that
1 -8
+ 0 N
meas Ak,R (1) < T = “N RO .

~35-




e

2 2
Proof of lemma 3.2: If not, for all 1 ¢ [t - R ,t - aR]
0 0" "0 0
1 -8
+ 0 N
> —_ R
meas Ak,R (1) 1= “n %o and
0
2
t -
. 0 QRO .
meas Q- (k) > f meas A (ryar >
R T t.-R 'Ry
00
N+2
> (1 - eO)KN RO
We will choose
b
_ 2o fo¥
a 2 2 N
and use the previous lemma for the levels k= U+ -2 ¢ ¥p > s.
2P
80 cyu
Iemma 3.3: Let o = 5 = and consider the cylinder
1 | %
LI SR L IEL AN
0
There exists Py © IN dependent upon (and hence .) such that if
—p— R::\ - then
- L
2 0
Y e}
< \-— "
meas A" (t)<[l—~/—o']\' R\ ,
; W \2/ N O
uw -—— , R
P, 0
2
for all ¢t (t - 192 t ]
Y ' 0'0

-36-
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Proof of lemma 3.3:

Consider lemma 2.2 applied to the function

+ W L+
(x,8) > (v - (0 ~ s N (x,t) , in the cvlinder

0
X
i
.
*
'
]
A
=
x
h

is the number claimed

in lemma 3.2. Notice that

therefore for all ¢t ~ [T,to] lemma 2.2 gives

(3.8) i
B(RO-OIRO)

majorized by

+ w + W
ess sup (v - (4 - —)) < =
QT 2 2
RO
2 s
2
Qn+ (x,tYdx <
W + W + W -
S A e ulb DR el
E 2 2P |
w -
2 ~S
+ 2
n " " = " = (x,7)dx +
= - (v - (u - -E-)) +
2 2 2P
/ :é , Nk
; 2 1 0 . N
i1+ &n 1 + 3 kN RO
\ = o\
/ :
2 \zp/
N
A 2
be selected, then if 1_R6‘ , the last term is
0

2

S
0
(]
ol
)
0
=z

¢n

el
2
)




We estimate the remaining terms in (3.8) as follows.
i
2 s
4+ 2
f “n ! - n - " m (x,1)dx <
B(RO) —-—'S—- (v - (& ——S)) + —
L2 2 2P
1 p=s 2 +
< [in 2 17 meas A + ‘ (1) < by lemma 3.2 <
o —:quo
L
1 -9
< s p-s,2 ___©o < N
£ bim2m 1-= ) x %o
For the left hand side we have
r 3 |
2| s
f 5“+ } 2 (x,t)dx >
| W + W + W
B(RO-OlRO) | 5~ (v - (u - ~ )+ — t
| 2 2 2P |
r _[
2 .S
> f ot 2 ‘ (x,t)dx >
- +_ Lo v e E T e -
- nlv>ey =
B{Rymo Ry) v 2p] l 2° 25 2P |
C = \T
> on 2 meas A’ (t)
h 2 = WL R -a R
r I
‘ 5P 1 5P 0 10
These estimates in (3.8) give the inequality
2 /1 I
p-s -
‘n 2
(3.9)  meas 3, (t) ;( . ( —2 RO+
i = —=,R_~0_R , on 2P7F

2p 10

=38~




a'
L4 2P N
-s5=1_2
02 (2n zpbl) N 'O
1
_ p - s 2 1 60 N 4C p-~-s N
= - s - 1 T-o/) ot 32 7% B -
p ol 2 (p-s-1)
Now
+ +
meas A (£) < meas A (t) +
y -—R v -—,R -0, R
P 0 ,P 0 170
\B R < meas A+ (t) +
+ meas [B(RO) (Ro-ol O)] < u+-£)— % -0 R
p’’0 10
2
N
+ No1 KN RO ,
therefore by virtue of (3.9)
2 1 -8
- C -
meas 11\+ (t) < P = 9 + 4 ) S +
+ W — p-s~-1 l -o 2 2
u --—-R o, ¢n 2 (p=-s-1)
p 0 1
2
N
+ Nol KN RO .
v |
) This inequality holds for all gy ¢ (0,1), all p >s + 2 and all
“ t ¢ [T ,to] -
M 2 |
. =3 29- d so lar that 1
fi Select 9 TETWN ¢ an po arge !
'\‘ 2 i
: ac Po ™ 8 3% 'e
.. > 2" —-g- , and
' 9 in 2 (po -5 - 1)
S
r
. 1& -5 2 :
, 0 !
‘ — < (1l - )1+ ) .
| Py - s -1 - 0 |




s

-

e e

I 274

ot

to obtain
- R
+
meas A (t) < 1l -~ 2 K RN .
RSN - 2 N 0
pO'O - -
2
- By 2"
R Co¥ N
2 {KN o

This proves the lemma.

Remark: It is easily seen that a suitable choice of po is

!
(3.10) p0=S+ 3+ ’-——?6‘ .
L (cO ) i

where {a] denotes the largest integer contained in a, and

Notice that C1 depends only upon the data and not upon w nor RO.

+
Remark: Since for g Z_po, A++ (ty ¢ A . o (t), we have that
-—,R -—,R
Y 2qto u p'O
2 0
meas A+ () < 1l - ng)z RN ¥g >
; b - z W ot TEZPFy v
2q [¢] -
d for all t 2
. L~ .
an or a { 9 ‘RO'tO]
The subscequent arguments will be carried over the cylinder QR .
0

tor k - N we also denote
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Lemma 3.4: For every Ol > 0, there exists qo ¢« N, qO > po such that if

Nx
“ 58 2 | then
9, 0
2
o + W N+2
- — < 0O
meas QR (u g ) —-Fl KN RO .
0 5 0

Proof of lemma 3.4: Lemma 3.3 and the remarks following it imply that

{6 \2
+ 0 N ]
meas{B(RO)\A r o (t)} i,\ > KN RO A 2 Py
u -—,R
2% 0

2
f 11 t ¢ t -
or a ¢ [ 0 uRO

Apply inequality (2.9) to the function x - v{(x,t) in the ball

,to].

B(RO)X{t} for the levels

+ 0w + W
= - —— = - — > >
2 u L .k u q ] qO q PO '
2 2
"
where 9, has to be chosen. 1If we do this for all ¢t ¢ [tO - ARB,tO] we
obtain
2 + Rx;+l
e meas{A ()} <D
\2q+1 ut oS R " meas([B(R \a* ()]
gq+l’ 0 0 + "
2 u -—,RO
>4
4DR
[ |v v]dx < |v_v]dx
;4 + X -~ + + X
A (EI\A (t) <o A (tI\A (t)
k,RO Q,RO N O k,RO \,RO
2
Integrate both the sides of this inequality over [to - .RO,tO], square

and use Holder's inequality on the right side, to obtain
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\12 I e ap |? 2
+ .
(3.11) ( = meas Q (,1 — l < RS .
g+l J R g+l - 2 0
\ 2 L 0 2 ] Aoy
- - -
] % 2 % ‘o + + |
i 7 vl axdt i | f fmeas A. _ (:)\A, _ (1)]d7 |
t ~i2 Al (ot (o bl -uR? *1 % iRy
~abh \ -
o "o /Ry LRy 1 Lo ]
I 2 2
4D 2 +
< | ROJv = 7 = =n"] .
| 52 0 2 \Y 'O(Q )
-~ 0N R
0
. <l
: R |
/ 2[meas Ak R (T)\AQ R(T)]dT .
t _-aR ’ ! i
0 o 0 0 0 ;
: 1,0 + w +
In order to estimate the v2 (QR Y~norm of (v - (p - —)) we use
0 24
inequalities (2.7) applied to the pair of cylinders QR ' Q2R . Notice that
¢} 0
. . . + ) + w
in this connection ess sup (v - (g - —)) < —— < § and that
QzR 2q 2q
0
-2 2,-1 _ 4 -2
(olRO) = 4R ; (GZRO) =3 RO .

. + -
Moreover observe that since . > | |, we have

.
¥
+
& Vegro
2

]
! g 2 .y = 2 N |

so that 5 (. - 'tO - 4R_,t) =0, t. [t -4R_,t ]. TInegualities (2.7) now give
X 5 ) o 00
R 2 2
! , . + 4 -2 + m +
{ A AL I v+ RS v - TS +

2 v2' (¢ ) 2°

2,9
2R
R 0




ts r % (1+k)
+
+v 4 f \ , [meas & ) (11% ar <
tO RO u --—q—, RO
2
N+6 2 2 (1+k)-1
< 2 W " RN N 2N(1+n<) Kq RNK RN
=773\ No T N o "N o

where (2.4) has been used. By assumption

2 2
EK < é) w
5 0

R

so that there exists a constant C2 depending only upon the dimension N and

the data, such that

2
Carrying this in (3.1l1l) and dividing by ( ;il> , gives
2

2 4D.2 1 N+2

o + w ab.
(3.12) [meas Q (u ) )] <4C, 11 T xy R, .
0 2 N g
0
Tt
0
f [meas AT o (1)\A? _ (r)ldt| .
to-aag ®o LRy

We add inequalities (3.12) with respect to g, from po to qo -1 and

obtain

+ W 2 4D.2 1 N+2
- ] \l - — < — — .
(qo po)[meas % (u 3 )] 4c2[K 1 3 KNRO
0 , 0 N 90
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0 0 + +
¥ f 2[meas A (1)\A (t)ldr <
=p_ t_-aR RS W —_r -
a=p 5'Ro 1R
2 2
4D.2 1 N+2 2
< = = R .
4C2 [KN] 4 (KN 0 )
0
9O
Now recall that o = > set
, j
C3 = 2C2 [ffh
“N

and observe that C3 depends only upon the data and the dimension N.

Dividing the inequality above by qo -p to prove the lemma we have

OI

cnly to choose 9, S° large that

1S3 2
qo - po Q3 < 61 .
Y0
We will select
‘ e,
* 3-13) IR I
o'1

e

remark: The proof of lemma 3.4 is an adaptation of a similar result of [18],

-

namely lemma 7.2 page 114.

Q

- — W

Consider now the pair of cylinders QR and

' 0
E R2
3 | 0 0

- y - — ) - 4 —
y AN x - x| 10ty T 0t
. 0

-44-
[d N - 3 -~




et R 2
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For them we have the following result

Lemma 3.5: There exists a number Ol > 0 depending upon

data, such that 1if

X ~
meas QR (u —a— ) 9 %y RO '
0 0
2
then either
Ne
+ +
(i) H = ess sup (v - (4 =~ —2—-)) < RJZ , or
o 2q0
QR
0
‘. + i
(ii) meas QOL (v = = 4 l-H) =0 .
R q 2
9 5 0
2

N and the

Proof of lemma 3.5: The proof is very similar to the proof of lemma 3.1.

reproduce the main steps mainly to trace the dependence of g, on

hence on w). Let R, ﬁn be defined as before, and consider the cylinders

n

a { N 2

= - < R AN - kN
QR [x xO[ “n [to \n’tO]

n
-:l: - - -
Q, : {]x xol <RIt Rt,]
% = {Ix - x| <R} <[t -ar’  ,t]
n 0 0 +1'70
which satisfy the inclusions
5 =1 - a
Qp~ < Qn 2 Qn < QR .

n+l n

We use inequalities (2.7) over a
n

(x,t) - (v - kn)* where




- -

L e —— -

1 1
kn—(kl+5H)—:;H , n=1,
k, = -

] . a .
2

Since k > k. ~ 0
n

. 2
v (k Ito - WRnl to) =0
. . - - 2 (n+ 2. -1 - -
Note that in this case (5,R ) 2 = R 2 2 (n+4) and (g.aR ) = R 2 0" 1
l'n 0 27 n 0
We have to show that the numbers
! ! +2
n T 2Nz Yn T2 W2 [o T v-x)™ axan
"0 0 QR
n
[t r 2
Zn 1 l ¢} + a Y
2= w7 W i (meas A ()17 dr ,
o '3
RO RO \ to aRn n J

tend to zero as n > «,

and Zn satisfy the recursion inequalities
2 2
~ 4+ —— —
M YET 8o
< [y +
n+l — n
- .4n
c2 1+K
. Y o+ 7
n+l -— { n &n !
The lemma follows 1f
- (N4

- d( -

Proceeding exactly as in lemma 3.1 we see that

2n+3 .

Y
n




-y

- — -

v ¥

~~

e

i.e, if

Here C and @ ace
From (3.13) and

lemma 3.5 holds true

C
3
G 2Py * 1 4 eoPy 263 |
_ 4 o]
b e0
We recall that 80 =cqw, o= 5, therefore taking in account (3.10) we
might select
- b
22 C3 1
= 4 C +
9, = s + &+ 1 2 b max{6,2b+3} )
C {(cw)
Set
22bC
3 1
A = C +
1 cz cmax{6,2b+3}
4 0
and
a = b max{6 ;2b + 3} ,
so that
(3.14) g. =5 + 4+ [JL] .
e 0 a

We remark that s,

i of ¥ _.
size 0

A, a depend only upon the data and not upon

l% 1+ M2 1
L x % min{2 %% ,2 <%,
2¢
l+x N+2 1
- — —4 —— _4 a——
l ~
where C, = =~ (20) “ min{z 2%, 2 <% |

N

as in lemma 3.1.

the remarks above it follows that the conclusion of

if we choose

W

w nor the
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front of tle propositicn:  Suppose that

=T
(3.15) - S - = Sz ) "
+1 - ‘r
ZS “qﬁ sS+4+4 A /,a
“ 2
Cbviovusly either
/.*l
N+2x
- - w 1 N+2
1. meas Lt —— 7 -
© QRO( <) 1% "x %o
orx
2%
1
N+2«
- - N . N+2
- 2. meas (v o+ — : - K
s QRO‘ ,5 ) 75 N o g
Case 1: By lemma 3.1 either
NK
l.a. ess sup (v - (L- + = ))- < R2 , or
0 25 - 0
R
0
- - R 1
1.b meas Qp (. + = - E-H) =0 .
o 2
2
N
& If 1l.a occurs then
\ N<
—essinfv<-1T -2+ p?% < py (3.15) -
r 0 - 25 0 -
1 R
0
P
. < - - -
\
’ 2S+5+A/u’a
F Adding ess sup v on the left hand side and T on the right hand sidd we
y 3
,": [l
} obtain
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©wsSE 0sSCc v

R
0

< - -

If 1.b occurs then

- ess inf v <

Q
K
il
2
i.e
ess Osc¢C
Q
pO
2
Case 2: By lemmas 3.2 - 3.4,

< ¢S85 OsCc VvV - .__.w_.___

QER
0

1

25+3+A/ua

- — 4
s
2

-

LS Lo

s+l

N

1

v < (1l -

)
25+S+A/wa

in view of (3.15), the assumptions of lemma 3.5

are verified. It gives the fcllowing alternative. Either
Nk
+ - 2
2.a, ess sup v < . =~ + R -
. - qO 0 -
) 0! 2
Kk
> B
) * >
' - q +1
! 2 ¢
[
' or
{ > b + + -
l.b. ess sup v .- + =, -
' qﬂ qo*l qﬁ‘l
" 2 2 2
. T
r




Hence in either ca-c

1
¢ss ose vV & w(l - ——————)

a
. s+ 5+A/w
; 2

Now to determine R, notice that by virtue of (3.15)

R 2
<€ ('—,’9) = 1 > C_W (2PO)2 >
- 2 - 4
Nkb
2+
sb-5 2
> 2 2R .
cO( o)
1
Setting I = (QSD_DC )2 -1, and
* 0
Neb
=147
we have
Kk
— 0 - h
Vo —2“ - )*(2RO) = R* ’
so Enat At L © I < = } 2
SO Tnav ‘RO - zR* 1 X XD\ r\* [to - R*, tO]
2
- T+ follows that
)
) (3.16) osc v < u(1 —~—L—-—a—)
Q s +A/w
) 1 5 ©
' <
’5 where s =5 + O, Finally if (3.3) is false then (3.16) follows at once.

The proposition is proved.
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4, Proof of Theorem 1l:

We will prove the theorem by exploiting the results of the previous

section. Proposition 3.1 is valid for any number w satisfying

egs Osc V < o < 2M .

Q
2R,

We stress the fact that the constants ¢,, a, b, A, h 1in proposition 3.1

do not depend upon RO nor .. Let (xo,to) € QT be fixed and select
~ = ZM > osc v. Let O < RO < % be so small that
Sp
Q c &
2R T
0
Nx
2 M
(4.1) (2r) < 24 )

T s +a/(2m)®
,70

Define two sequences of positive real numbers {Rn} and {Mn} as follows

h
> = 2% = = (R = 2 cee
1 2 A T o n) n , 3,
.22
where ~ =min{’, ; 4 -, and
1
= 21, = (1] « —————)
1 n~1 n sO+A/M:
2
emma 4.1 - o o, Cx o o 7 and for all n oo M




Proof of Lemn .1 nooeon R R 3 ¢
vroof of Lemma 4.1 If n n+l . 0 G, then for all n 1
Maay DHE e s - : ) <1 .,
s +A/r«1(‘;’)1
2
S5 LD NS
n
MniHOE n=1,2, ...

wiich implies that ;‘-1n W0 as n * >®, A contradiction. The statement about

. }-’_p b ois trivial.

In view of 4.1, Proposition 3.1 implies that

ess osc v < M .

2
QR
2
Moreover
N NK N« \h / y h
“22 = E2 ‘\Rl2 = " \ L 3
! s _+A/M
\ 0 1
2
, 'or simplicity of notation set
!
s‘1+A/xa
J(x) =2 7 , X0
>

' Phen, using the definition of M,

/ '
h

3 Nét o M, \ h s [, \
I8 RS ¢4 | S b < g [ =

' 2 Vom0 T SRR

} 2 VT 1 /
Nib
. (M 2M
) N M: i _(_r\“?:_)_ -a / 2 4
... 1(Hz) J (Ml) \ o (Ml)
' e KL
S T2 k)
r Looalling the definitions of b, s it is immediate to sce that 2(-('\- )‘j )
. el




Now for all n < N it is easy to check that

o

(Mn+1) < 4a

o (M - ’

(bn)
Hence
Ne oy
R2< 2 .
2 - a
s +A/M2

1
QR
1
Nk
— M
R2 < 1
1l - a
s +A/M
0 1

2

imply the same two inegqualities for R2 and M2' The same argument shows

that if

n
QR
n
TN
Rn : a '
s + 1
0 A/hn

2

then the same inequalities are valid for n + 1. The lemma is proved.

As a consequence of lemma 4.)1 we have that ¥(x Cop

O'tO)

ess lim vix,t)
(X.t)*(xo.to)

exists, We define the function (x,t) -~ Q(x,t) by setting
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-

)
.’
!

vix ,r.) = ess 1im vi(x,t) .

(x,t)“(xo,to)

Lenma 4.2: The function  (x,t) » v{(x,t) 1s a continuous representative out

of tho equivalence class v, Moreover if K is a compact contained in

o
N . . . . . + +
there exists o nondecreasing continuous function uK(-): R R, uK(O) = )
depending upon the data and dist(K ;) such +hat
1
’\'(\',t)-\\/(x,t)fxt(x-x|+|t-t?z)
171 2’27 K17 2 1 2

V(xi,ti) Ko, 1=1, 2 .

The statement is a direct consequence of lemma 4.1 and establishes the

interior reygularity claimed by Theorem 1.

Remark: The continuity result is a consequence of inequalities (2.7) - (2.8)

and lemma 2.2 solely.
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R adinten R

5. Continuity up to the boundarv:

Let u ¢ W;’l(ﬂ

conditions. 1In this section we investigate under what circumstances the con-

T) be a weak solution of (1.1) subject to certain boundary

tinuity of u can be extended to the closure of QT . As remarked in the

introduction, this is equivalent to prove the continuity of (x,t) » v(x,t)

on the closure ST .

Our study is divided in three parts. First we show the continuity of v
at time t = 0 . Then we investigate the regularity on the lateral part ST
of the parabolic boundary of QT , for the cases of variational (Neumann) bound-
ary conditions, and homogeneous Dirichlet boundary data., The method of proof
in all three cases is similar to the one in section 3 and 4, and consists roughlv
speaking in constructing for every (xo,to) gﬁT a family of coaxial nested cy-
linders with same "vertex" (xo,to) where the essential oscillation of v pro-
gressively decreases according to the rules imposed by the operator in (1.1) and
the boundarv data. Because of the information contained in the boundary data

the analvsis in the nresent situation is in fact simpler.

We will consider cvlinders of two types.

Basis cylinders:

[
_ _ o2
(BC) (xo.tu) € QT JEE {ix - xOI < R} ¥ e, = R ,:OJ
with {{x - x.] < R} <2 and t, - R2 <0
‘1 ‘O J cu O

lLateral cvlinders:

) 2
. - U 1 -
(1C)  (xgatg) ¢ Sp i Q- i xgl © R} x {co R ,to}

The axis of  (1L.G) lies on ST and both (BC) and (LC) are not contained

in




...} satisfv identity (2.1) and in addition
(x,0) = v (x) = :-1( (x))
VX, 0 MO UO 2 .

in the sense of the traces over o . Let the selection wO(x) I C(uO(X)) be

viven so that (2.1) is well defined for all t, =» 0 . We assume that x - vo(x)

0
is continuous in - , with modulus of continuity s —* UK(S) over a compact
: + + . .
K < . Here ‘K(') maps R =+ R is non-decreasing and QK(O) =0 . Our

task is to prove the following theorem.

theorem 5.1: Let K be a compact of f¢ . There exists a non-decreasing,

N . + +
continuous function s = wK(s) R >R, wK(O) = 0 such that

1
: Cov(x I N I L
IV(xl.tl) \(xz.tz)l 2wy = X, ltl tzl )
For all  (xy.t) « K™ 00,11 1 = 1,2, and every compact K'cK

Fhe function «K(.) depends only upon the data and the modulus of contin-
H . 'y , .
uity of \“(.\)
Clearly we have only to prove the continuity at t = 0 , so that it will

itice only te consider eviinders (BC) .
P Sul Let o xgoy and R 0 so small that B(R) « - . Fix 0« ty RT

wmd over tie evlinder  (BO) QP consider the cut off function x =~ > (x) =selectued
AN

g in (BY. There exists a constant v depending only upon the data such that the

fanei ions (~..[\-y(v-—k)£(:\-,t'\ satisfy the inequatities
S - o () + - ot
J.H(R-‘IR) PUX Q.B(R—-]R)\LO,L'
t 2 -2 RN B £ 2 N
(= T G Y R T CRTY T = R
R 1
-5 -




ard

-

s W

!

“t

-+
¢b (k,0,t)

b

provided that k ¢ R

satisfies the restriction

(5.2) ess sup (v - k)t < 8 .
D NG
UpMer
Here ¢ 1is the same number introduced in (2.6) and
Tt —f . + 2 |t
Cb (k,0,t) = 4-) v(x,T)x!lv € 07(v - k)™ g7 dx
tO r
% [ | Ol = 01 (v - V¥ 22 () dxdr
0 .
Inequalities (5.1) are derived in awav similar to inequalities (2.7) - (2.8),

the only difference beiny the domain of integration.
v can be taken equal to the analogous constant appearing in (2.7) - (2.8).

Next we simplify (5.1) by imposing further restrictions on the levels

Setting

k. (R) = sup v.(x) , kK, (R) = inf v (x) ,
1 B(R) O 2 BRY O
for the oscillation of x - vo(x) in B(R) we have
ose v () = kK (R) = k() \.\K(m .

B(R)

In particular, the constant

K




for a covpact K .onta..udd in T and containing  B(RY . From now on we will
keep fixed the compact K , and all the subsequent aryumente will be cuarvied
over balls B(R) c K

1f in (5.1) we choose k » kl(R) , then (v - k)+ (x,0) = 0 . Morcover
if we look at v as extended over all QR in a way not to cxceed kl(R) .
then (v - k)+ is identicallv zero over that portion of QR not contained in
QT . Therefore if k > kl (R) , the domains of integration in (5.1) can be re-
placed by B(R - glR) x [to - Rz,toj on the left hand side and QR on the
right hand side respectively. These remarks show that the function
(x,t) » v(x,t) satisfies the inequalities

2

¢.1)7F (v - )7

Vl

’O _ - ~ _ 2

2
-2 _ , +
R IR N CA S NI Sh
2,0
] ‘R

e r % 1+ <)

| . + ) q
+ 4 {meas ()77 dTt

) 2 AR

)

4 2

+ sup Qb (k,CO’R ,t)

2
tthO—R ,tO]

for all k kJ(R) and satisfving (5.2).

-

A similar arpument holds for (x,t) » (v - k)—(x,t) provided that k < k

2

It vields inequalities to which we will refer to as (5.1) .

We denote witi, s he woaltlest natural number sati-fying
2V .
L g2,
(5.3) s i -

(R)




1
4
i
¢
et . Ye anv rositive numher and construct the (BC)
. S 2,
A < k. '*at, - R_,c ] B(R < K <
R ol 0 0 0’0o (0)
0 -
s.“\l
Ay
—— i
) ‘:’2'1 14
t = NR. " = min " 3 .
07 o 1e il
\ J
Here ¢ is the bor claimed by Tomma 3.1,
Temma 5.2: Sosume that
N
) . 2
l ‘_‘l ~ - :- \v 3 —_— e ——— “
() e (i1) 623 Fq .
(: | . -
| T
0
Then
\ . N ’)k-}l ~ (1 )\
LECV < maxi. o= en= g 2 ARy
11X d“*} H K 0
iy _ 2
T
o
rroof of Torma 5.2: If erc v - -— then the conclusion of the lemma is
Preal Ch Tt 2 e S
o
Foo T
L N , s+l o~ . ..
trivial. Analogously if L - 2 “ K(ro), tlicre is nothing to prove. So
acsume tlat
" “ -
~ .4 osc voor em Y o AR .
) (5.4 SO el “R)
1 f‘\ , - L
) N
0
! Then at least one of the follewing two incqualities holds. Fither
I
| i
‘ '1 (=.%) Lo(F y - * -l or
< T 16 ' s+2 !
: 2
.|
A\
", (S.‘?); F':(? ) .4 5

' Here




- e

; - ey W

v

_—
+ -
L F oSS s v = ¢sa Infow
s I
' = T
Indeed if both (5.5)l and (5.5)7 are violated then
DR Sk (r) -k (m =T
(.O ok 5 e - T -
. —_— - _-——_u = ’
59 25+l 2:=,+l
contradicting (5.4).
Suppose that (5.3), holds true and obhscyve that 3
ras{ (x CQl e e = ¢t os
measi (%,t) QR iVi(x,t) s <1\2‘ <
0 2
2K
1
. N+2kK N4 o
meas[QA i \T] = CO' Ky }O . .
8]
Consider inequalities (5.1) for (v - k) ; k < o+ ;;2 ., and apply lemma
inl

3.1. It gives the following alternative. FEither

N
- - 2
(i) u = ess‘sup (v - ¢ + =5 )) RO '
QR -
or
i1 o - - L ) =
(11) meas I (. t S T 3 ) = 0 .
0 2
If (1) occurs then
ossoinf v Ty —_ = -
“~ te.

-G0-




- -

A e AR

e _1
If (ii) is valid then
ess inf v > u- + = . L =
s+2 2 _s+2
Qu IS 2 2
R T
L
2
= . = .
s+
5 3
Hence in either case
o v < - =
sc v s+3 f
W . 2
QR n'T
0
2
The lemma is proved.
Lemma 5.3: Let Xy < int XK « & and RO so small that B(F.O) < K. There

exists a pair of sequences {Rn} v o0, {fin} \ 0 such that

osc v « M n=1,2, ... ’
M

R

The sequences {Rn} and {¥ } depend only uron the data and the modulus

of continuity ;K(-) of x - vo(x) in K.
Proof of lemma 5.3: FPor Rl -~ Ro define
s+l - .
M, =07 200 ;2 W (R Lo 20
My max { ‘k(xl) s '

© so small that

and select 1




Then construct inductively the sequences {Rn} and {Iq} as follows:
. “n s+l -
™ = max{M - —— ; 2 o R)Yrin=1,2, ...
n+l n .S+3 K n
( 2. )
; 3 N R
R = min ¢ a : 2 .
n+l s+3 2 !

pe

It is immediate to verify that {Hn} V0 and {Rn; V0. By virtue of
Lemma 2.5, the conclusion cf Lemma 5.3 holds true for n = 1. Suppose it

holds for n and let us show that it holds for n + 1. By assumption
M

NK
osc v < M and R /2 « =2, Hence by Lemma 5.2
N n n s+3
o 2
na
QR T
n

To conclude the proof observe that

M M
Q n+l n -~ fot Q n NS
R ”“T ~ i K -
n+1l Eﬂ. T
2

-y,

Proof of Theorem 5.1: It is an immediate consequcnce of Lemma 5.3.

Corollqu; Let ' bhe an open set contained in .! and assume that

T W

X - vq(x) is continuous on S with modulus of continuity o () uniform on
} ' K
N every compact ¥ o ' then v is continucus on ¥ ~ [0,T] and
.
\
‘ 1
. | ' ' i e
. vix. ,t - vix,,t S [ 4 + L, - “
(%0t ESTAPY A IR
5
r

»
J -62-
-
!




¥ {x
1

'ti) K (

(),

1,2 Phe continuous non=decreasing tunct ion

- : E\_(H) = J Jdepends onle upon the data and K(-) .
[B] The case of variational boundary data.
Consider formally the problem
; 4;-:(v) - div a(x,t,v," v) + bi{x,t,v,\V v) 0
i ‘t X X
i
(5.06) ) a(x,t,v,TXv) . ng (x,t) = g{x,t,v) on ST
! T
?
i
l v(ix,0) = vo(x) . vo(x) ¥ 0 a.e. in .,
where n = {n ., , ..., n_ ) denotes the outer unit normal to S_. We
b d X X T
T 1 2 n
assume that é(x,t,v,p) and b(x,t,v,p) satisfy [Al] - [A,] and that
Vo L, (2. ©On the boundary data g(x,t,v) wec assume that
[G}] g 1is continuous over ST “I and admits an extension  g(x,t,v) over .
such that

'l

-

g a growth at most linear with respect

) to wv.

! 1,1

f: By a weak solution of (5.6) we mean a function v wq' (QT) satisfying
i

: 't t )

N (.7 -7 (<) (v - 01§ dx RS B AT OV Y (A T v dxdr

. tﬂ tO

N

R

r; ~0 Y

for some positive constant

Fssentially we are imposing on

R .
HT;‘Q(X't'V) " e g(x,t,v) H <C<

o

C.




. — S s PR . S N, T, __‘:)‘ LX =
i ho h
R
ST VIvoanin
+ R}
- r | Lt ~ 3 .t . ., K -t
W R S B AT U S U S S S (7,71, and  vix, ) ov o (x) oo
t 4 ‘: * . ¢ ‘~1L‘l :‘ .
©1
. [ . 3 S . - et b T s v . R e
L. cevcoulor 0Ty oo for Ll W {0, aenco a2 wWeas solution
[E XN SR o g weal e Y e TO{LLOY . Thore Dore by tii o rosulve 0o
Toaov Lo FRTSSRIEEEIING Lo ereever T v 1w continudus in sienow

1
. O IR E T s - PR
cenTany YAt




YMoreover if o is continuous over all =, then there exists

s+ . {s) + B >R, «_ (0) =0 continuous and non decreasing such that

|vix tl) - v(x2,t2)| < (e, = x| + ]t =19

1’ C

for all (xi,ti) ¢ D i=1,2.

The functions u0(°) can be determined in dependence of the data and
the positive number ¢, and xo(') can be determined only in terms of the
data and the modulus of continuity of VO.

The proof of the theorem is essentially the same as the proof of interior
regularity and is based on the same arguments of sections 3.4, The difference

is that instead of working on cylinders QR here we are dealing with

cylindrical domains of the type

.
R) ~ [, - R",t
B (R) [O R O]

We bound ourselves to describe the differences occurring in the proof.

Fix xO + 3! and consider the portion of the boundary .. given by

|

ol < R} , R >0 given .

S {]x - x

Our arguments being local in nature, we may assume without loss of

generality that SO lies on the hyperplane Xy = 0. Indeed this can always

be achieved by a local change of coordinates in identity (5.7) written for

cxample for test functions ¢ (.,t) supported in a neighborhood of X for

t - {n,T].
[B]l. Incqualities analogous to (2.7):
Tt (X‘,‘,t Yy . & t.. >0 and set

A T ™




-

= q . . . S . !
R i X F\D : N [N ' oo
o} ol
[ N ~ T ~ n- N
Ch R lt{’ R, O] , K| tn .
Jince  d around X is a portion of the hyyperplance X, =0 and
0 n
1z the half ball  ix - xﬂf ~ R,xw 0y and ¢, is the half oy
: ’ ' IS IS
obtalned by intersecting the lateral cylinder (LC) o wit} .
1. ‘
. . . 2
notice that since ko < to, C_ does not 1lntersect .oat ot o= 0.
2N

~ur next task is to derive inequalities analogeous to (2.7) over the

Z 0 and
C_(a,,0) ~ ~ e~ (1~ o )Rz t ]
12 R0 R 0 2 ) !
OlrQq (Orl) .
. . . i+ 2
This is done by selecting in (5.7) test functions ¢ = (v - k)

Bl
x,t) >~ 7 (x,t) 1s choscn as in (a).

All the terms on the left hand side of (5.7) are treated as in
derivation of (2.7) except for the different domain of integration.
in this connection that o (x,t) wvanishcs on the parabolic boundary
and not on the parabolic boundary of CR'

Wee entimate the term involving an integration over 3. on the

s1de of (5.7) by transforming it in a volume integral as follows

t
0 . a
= [ [ abg,w v ~10E 2T nasar =
t -1 [
0
t“
. il
SR A SN U N (U O RN PO R IV S
S
ol divigx, v (v = %95 7w, ) jaxd

-

linder

Moreover

whaere

the
We remark
of Q.

right hand

domair::




We expand the integrand, use hypothesis [G] and perform routine

. . -1 2 2
calculations involving the Cauchy inequality ab < ¢ "a + ¢b , ¢ >0, to
obtain the estimate

+2 2
I yl(g) f f (v - k)- ]ng, axdr +
C
R

+ y ey f [ alv - K> O];Z(x,f)dxdf +

ref IVX(V - k)t}2 cz(x,r)dxdr ,
C
R

where ¢ > 0 1s arbitrary and Yy Y are constants depending upon the data
and «¢.

These remarks prove that there exists constants y and § such that for
all k . R satisfying

(5.8) ess sup (v - k;i <& ,

x

we have the inegualities

> 2
+,° -2 2.-1 + 7
(5.9) [ (v - k)= | SN I A v - k-1 +
A . 5 - o
v, (Coloyey)) 2.¢,
{ t r = (1)
| A . ! + 7
' | e as “ N < -R-
+ ) L mcas A i () ] | ' ruplr R) | :l(k, LO R, 1)
b MELRY L
+ 2 s .
whers ?"(k,tﬁ - L, i~ dering g oo Tt Foory cxeopt tor the
A R i t
Aifferert domain of integrataion. Tne piala (t.1) 111 for all k  satisfying
(5.8) ar 11 s (G I
I




r

oo vemark that the constants v and 8 in (5.9) might differ from tho
aidloaous constants in (2.7). This 1s due of course to the oxtra term involwved
St he boundary integral,

varta 2.1 remains unchanged and Lemma 2.2 now 1y stated as follows.

S . + + .
LTt ke RO, ess sup (v ~k) , and n - 0 such that
ol
SN[t -0RT Lt
R { 0 N O]
Y . Set
. + !
vix,t) = v(vx,t)) = in | ]

then theve exists a constant € depending only upon the data such that for all

o+

[t‘ - VR ’tol

3 2 2 I
; Svax = [ Tty - RD)dx +
R—clr\ R
~ v PN‘\
. \ ~
+ — (L + 'n 7—)(1 + 3 Ymeas R
1 n

A= remavke:d after Lemma 2.2, also in the present situation an analogous

rooalt Lolds for (v - kY, k0.

'R} .. Proceeding in the proof we see that Lemma 3.1 holds in the prescont

Artuation for the domain CI‘ instead of for the cylinder QR. The only
N
aciification regards the proof of the recursion inequalities [I) - ([I1].
oo thone we wsed the embedding inequality (2.11) valid for functions of
+ 2 .
(0 ). In oour case (v o~ k)= 27 (x,t) do not vanish on the lateral boundary
1O, therefore we must use incquality (2.12), and observe that for the

N
“~

Lol I O ,‘n'ﬂ one can consider the constant in (2.10) as
i t )

-(8-




-

o b

.1~.

rinally the last modification occurs in lLemma 3.4 in the use of DeZicrgi'c
ineguality (2.9). Now such an inequality holds also for convex domain,

therefore (2.9) is valid with B(R) replaced by QR. The remainder of the
proof stays unchanged. The first assertion of the theorem is proved, For the

"
. . . “~ .
second part we consider domain CR with to - R < 0 and over them carry on

the arguments of Lemma 5.2 - 5.3 with the modifications indicated above.

[C]  The case of homogeneous Dirichlet boundary data,

1,1

We let Vv ¢ W2 (0.} be a weak solution of (1.6) which in addition

satisfies

in the sense of the traces over ST' In this paragraph we 1lnvesticate under
what assumptions on 3  the interior continuity of v can be cxtended ur to

the lateral boundary S, of . On 3 assume the following:

*
(ry 4 >0, RO > 0 such that VXO ¢ 3% and every ball
B(R) «centered at XO' B < RO'

*
meas [ o R(R)] < (1 - ¢ Imcas B(R) .

Theorem 5.3: Let v W () be a weak sclution of (1.6) such that

R « Mo~ o+, and v
AL

1

i - e 0 in the sense of the traces. Therce oxist

0 <n <1 and a constant [, such that

Ivix, )] = n@ist o, 0en .

oereover 18 vi{x,0) - votx) in Lhe eonce of the traces over end 1Y

. l . : . . X . .
VO G O Vol T o, then the e «xicts a continnous aon Jeereasing funct ton
ol )

S

S

.




i
i
4
T +
LY ¢ F » R, (D) = ¢ such that
1
! N [ | ‘ ¢ 2
‘v(hl,bl) - \(x2,t2)1 :_u(,xl - X, bty - to )
for all  {x..t.) ¢ o i=1,2 . The nuphers » and L depend unigono v oy o 0
101 T
whioreas o (+)  can be determined in dependence of the data and the wodulu. of
continuity of v in .
Q
The thweorem is a consequence of the following inegqualities valid on every
(LC) ©Q._.
n
2 2
+ 7 - 2.-1. ¢ e
(.10 Dy - k=l e R T R T vy - [
vooTe (e, < c
\2 [ R 1’72 ™
2
[t r ) < (1)
= ‘
I S + g | 7:’ ?
4] Tmeas AT _(6) n L] 7 drx + Ssup ¢ (k,e,-R7. )
}4 ‘2 . k,F t E‘ [t _RZ ¢ ] a 0 y s
L o7 | o~ to
Tor all ok I =uch that
(5.11) § .
' oyl S 1o the came number introduced in (2.€) and Y  is the samc
~ ~
v cootant arrcaring in (2.7). 0 The definition of ia(k,to - F7, t) is cbhvious.
) oooalities (5.10) ave derived from identity (2.1) upern the cheice of
) c o= A(v -y, ware o i sclected as in (a).
| )
‘ °1,1 °
; ) . + 1,1, .
rf onice WY at osince v W_'T(C ) we have alsoe (v k)= o w7 (LT) and
- i <
]

;o o—

e o suchoa ohcice of v in {2.01) is jurstified. We will use a simplificd

4 o D (e Ty bt ined ey g ooang Dortley restrictions on the levels .
. , I3 -~ +
| SR e T . ol et (FLI0) foer (v~ K) woe oo that
>N 4+ .. N .o N v
" O e meteover By donhams ot v g rvtended to e core o
- [




that rart of

(5.10) can be

Q.. that remains outside QT, the domains cf integration in

rerlaced by QR(Ql,Oﬂ) and QR respectively. Hence for

(v - k)+, k - 0 we are led to the inequalities
2 2
t + -2 -
.10 v -0 e R (T e -0t
vy G (e ey)) 2,00
t r = (1+k)
0 ity
+ q
+y 4 f [meas A (1}]° at
2 '
t -R
0
valid for all cl,cz ¢ (0,1), and all %k > 0 satisfying (5.11).

The sane

(v ~ k), k <

in (5.10)7 ¢
k >0 (k<<
Let (X

&

s0 that O, )
13N

=

(xo,tO). Set

and, without

argument applied to (v - k) , k <0 leads to inequalities for

0 to which we will refer as (5.10) . We remark exprlicitly that

5,10 resp.) there 1s no restriction on the levels k  other than

resp.) and satisfying (5.11).
3 ) ixed d 1 R 1 h 2 2
,to) <8 £, >0 be fixed an et o be so small that (_RO) <t0 .

arc lateral cylinders (LC), with common "veirtex"

= ¢ns sup v o, Lk =ess inf v, & = ess oscv
n n. nao O
“ap T D" p Q3r 0 p
0 0 0
loss of aonerality suyppose that
+ -
[ER Iu [ .

Tt s 10 b tlre

smallest poritive intcger such that




|

+ w . + .
and observe that o - —g-> 0. We will employ (5.10) for the levels

ro

=7 - 4;-,p z s, P <K, over the cylinders @, R < Ry

Por overy El > 0, there exists a positive integer p (depending

ot v, )  such that either

N

o
A

(1) — < R2 , or

ST
.. + W N+2
(ii reas{ (x,t vi(x,t) > -—}<e8
) s{{ )eQRO](x) b 2p} L% By

Tne number p  depends upon the data and 61 and it is independent of

0

and R_.
0

Froof of Lemma 5.5: “he lemma is proved in exactly the same way as Lemma 2.4.

We remark that the estimate

+ * N
meas{B (R A t > @
s{B( O)\ U+ _Jﬁ_( )} e Ky RO
[
2
2 . . .
for all t ¢ [t - R_,t ], which in Lemma 3.4 was derived from De Giorgi's

ineaguality, in the present situation is automatic since &0 satisfies (P) .

sma 5.6 There eoxists a number 61 > 0 such that if

meas{ (x,t) « Q




1
1
1
+
!
¢

cY

2

The number 8

6, depends only upon the

rroof of Lemma 5.6:

fact also that makes § independent

1

(i1) meas{(x,t) ¢ @ [v(x,€) > 1"

. +
is in fact simpler because the term @a(k,t

_i+%ﬁ}=o
ZP

data and not upon

The proof is the same as for Lemma 3.1.

o]

of .

Lemma 5.7: Consider the decreasing sequence of numbers i

Temma 5.7, The

.

or R_.

@ 0

In this case it

2
- Ro,t) =0 , It is this last

As a consequence of Lemmas 5.5 - 5.6 we observe the following result

7R

—_— and the family
n §
2

(x

t .
o' o)

i
.
O
o>

.
r

' of coaxial nested cylinders QR with common "vertex"
9
n
2
here exists a positive integer g ¢ N such that either
R 2
osc V§_2q *—S-
Q na 2
R T
0
2n+2
or
N osc v<(@d--—3) osc v
. ) no
) Cr T 2 Qp Mo
O L
n+2 n

) 2 2

!
ré The first assertion of the theorem follows from

!

1

4 above and Lemma 5.8 of (18]

S . 201 e 3Ty i
r‘ v in lateral cylinders QR with tO
} in ;art [B]. We omit the dctaile,
L4

;

f

we have an estimate of HEldcer type near S

T

rage 96-97.

. The sccond part of the thecerem is proved by cstimating the

-~
<

- r -~ 0, in the

— -

is a consegquence of Tomma 57

cecillation -F




Femark:  IY g({x,t) T 0 on S

0N
4]

whore S% is an ojen set in the relative

=

-~

topology ¢f £, then the continuity can be extended up to any compact

i

K c S%, compact in the relative topology of ST'

6, tUniform aprroximations:

A common device in the theory cf existence of weak solutions of (1.1)
sukliect to some initial data and to variational or Dirichlet boundary condi-
ticns, consists in solving a sequence of regularized versions of (1.1) to
obtain the solution as a limit in a suitable sense of a sequence of solutions
of regularized problems., It is of interest in the applications to construct
the soluticn as a limit in the topology of the uniform convergence on comyacts
of .. Ore such application can be fcund in [7). 1In this cection we indicate

Yow tris can be realized.

1,1

et v o« V;'O(CT) satisfy identity (1.5) for all ¢ c W,

(TT) such that

t - 2 (x,t) has compact support in {0,7)]. Suppose that there exists segurncrs

{wn} ard {vn} = {ﬁ_l(wn)} such that
1
4 v g ! -
(F..l) Aq, ‘A W (T)
C ar . - a3 e ‘ 1,0,
v - v strongly in LZ(.T) and weakly in \2 (uT)
" - w weakle o in 'j(ﬁT), W {v)

2 (x,5,v , v ) Px,t,v ,V v} »
R SR ' 'R’ 'x ' n

alx, s, T V) bix,t,v,7 v) weakly in IL_(2)
’ ’ 14 x ’ ’ ’ ! x P 2 T

(F.2) W ant v catisfy the idontity




e —m

o
fer all ¢ o W (7 ) and all intervals [to,t] < (0,T].

Since Wt S(vn) in the sense of the graph, (6.2) is the weak formula-

tion of
i L7 1 ..
(6.3) Yy ~(vn) ~ div a(x,t,vn,van) -5 h,(vn) +

v 3 i ! <
+ b(x,t,vn, xvn) 50 in D (PT) .

. -1
femark: Because of the regularizing term -n AB(vn), the functions

)

(x,t) ~ wn(x,t) ¢ B(vn) and (x,t) > vn(X,t) are Holder continuous over S

with exponent depending upon the data and n , (see [18]).

Regularizations like (6.3) are of the type of Hopf vanishing viscosity,

and were used in [2].

Furthormore we assume that the weak solution vn of (6.3) can be obtained

1,1
as a weak W’

( _)-limit of weak solutions of

" m L m m 1 m
3 -— - div a(x,t,v ,V v - = AV 4+
(6.4 ot m(vn) (xt, n’ x n) n n

m m
+ t v = i ' (9
b(x, Vo xvn) 0 in D'( T)

where {& ()} is a sequence of continuously differentiable regularizations of
m

the graph  ={¢) such that
< ono<oe! ¥s - T
0 xo il ,m(S) pia
1
£'(s) <1 isf no=
m - m
m m 1,1 . .
Camely we aorune tlat Em(vn), vn . w:?’ ('T) uniformly in m and that
(1) vm -V strongly in T (1) weakly in Wl'l(; )
n no S 2 T
m . . . 1,1
i s (v sw o By strongly 1n L and weakly 1T
(i1) 'm( n) w, ( n) ongly 7( T) e cakly in “2 { T)




Cas m_ m m m
(iii) ai(x,t,vn,\xvn) ’ b(x,t,vn,vxvn) -
ai(x,t,vn,vxvn) ’ b(x,t,vn,vxvn) weakly in LZ(QT)

This second approximation is introduced only for technical reasons in

orcer to idustify the calculations below.
Theorem 6.1. Assume that &M < « such that

¥n ¢ N v | <M .
n

m’QT

Then the seguence {vn} is equicontinuous in QT.
If ¥n ¢« N vn(x,o) = vo(x) € C(Q) in the sense of the traces over I,

then {vn} is equicontinuous in QT v (o).

£ ¢ = = : C(R)  ther i i-
I ¥n ¢ I vn ST 0 and vn(x,o) vo(x) e C() hen {vn} is equi

continuous in QT.

Finally assume that

(i) v (x,0) = v_(x) ¢ C(Q) ¥n ¢ N
n 0

. - 1 >
(ii) {a(x,t,vn,vxvn) -3 van} . nsT = g(x,t,vn)

in the sense made precise in (5.7)

1 -
‘ (iii) 3" is a C manifold in R L .,

(iv) g satisfies assumptions [G] of Theorem 5.1

)
-

!
l
i Then the sequence {vn} is equicontinuous in
i

% &
: Proof of Theorem 6.1: 1In section 4 we remarked that the modulus of continuity .
\- cf v in JT is determined uniquely in dependence of M and the various
: constants appearing in (2.7) and Lemma 2.2. In view of this, to prove the

-76-




+

theorem will be enough to show that the functions (vr - k) satisfy inequaiitics

like (2.7) and Lemma 2.2, with constants independent of n.

. Let

T (o,1),

Let (x_,t ) ¢ 2 and R so small that QR SN

o'Ye’ © T 31,62 ‘

construct the cylinder QR(Ol'OZ) and smooth cutoff functions (x,t) »+ 7(x,t)

such that
3 = © v ;\n
(1) zix,t) =1 (x,t) « Q. loy,0,) , supp R
(1) ol <SR v ) < =R
t e X = C
2
(i) far) < 507
%

It is easily checked that Lemma 2.2 carries over to the present situation
with constants independent of n. We start from (6.2) choose a cutoff function
x » Z{x) independent of t, and reproduce the same estimates in the procf of

lLemma 2.2.

. + .2 ) .
Next observe that by selecting = (Vr - kY 7, k>0 1in (6.2) we obtain
. L + . + 2 .
inequalities (2.7) for (vn - k) with ta(k,to - R7,t) = 0 ., The caleulations
show that the constants 4 and & are independent of n (although they might

differ from the analogous constants in (2.7)). The argument remains valid for

(v = k) + k +~ 0., Hence we have to prove inequalities like (2.7) for

+
(v. = kY v k«~0 and (v - k) , k ~ 0,
n n

I3 : T ] m
For this write (6.4) in the wecak form for test functions o —'(\'r - k)
The term

0 o
+

. m m - vm N .
f 5 f {a(x,t,vn,vxvn)\,x((\n R

3

m, m m R A
- b(x,t,v ,V v)(v = kY- -7 odxd
n’ x n n




let m -

Next

can ke treated in exactly the same way as in the derivation of (2.7). Thern we

«  (the lowry semicontinuity of V. v in L (7))

is emploved) and
X n 27T

observe that the constants involved are independent of n.

we estimate the twe remaining terms

t’\
T o= 0 \ PRI S Cxat 1
LT . X .m(\n)[ (\n KY'] nT(x, t)dxds
t -k .
A
1 tfv . . 3
== 0 et e - )T g (kD dxdT
2 n- _.2° Xx'm o nox n
LO . .
For Il we have (we drop the subscripts m and n  for simplicity of notation).
- T [ xe N E i , R x 2
o= PE m R R [y - k)T (v - k)T DT, T)dxdT =
<, t
. sy + 2
=] ] TS v = kY-1 ¢ T (x,T)dxdr
Ln
‘\ where
s
Ms) = [ 2tk + )T dr .
“ 0
)
1} It follows that
) : +.2 2 1 . +
’; oo, v -x)=1"¢ (X‘t)_———‘;f Fiotv = ky=1axa: .
: F-- B - 270
“ B( 1 ) \2 QP

T.e integral I 1: estimated as follows:

4




N

. + 2
nI > - f f b(v)Vx(v - k)= o Vx; axdr -

x

- [ e (v - k)T ar axar

r

From this, standard calculations and limiting processes it follows that there

exist constants vy, § independent of n such that

2 2 2, -1 2
~ - +
(7.1) ' (v_- kI <yl R) “+ (0. R) Y v =k)= ] +
n ',1,0 v - 1 2 n 5
\2 (QR(ﬁl,oz)) ’QR
[t r 2 (1+4)
bt ¢ t q ’ : 2
+ ) Lo [meas Ak’R(r)] art + (k,tO - R ,to)
o0 )
) +
provided that ess sup (v - k)= < &,
QR
+
Here . (<,+,+) can be majorized by
i st + +
(7.2) o< cen > [ ] v, = k)= + xlv - k)~ >0lidxdr .
mn[‘.:l:cz]R R
: +
Moreover vanishes if (7.1) are written for (Vn - k) k>0, or
(v. = k', k<0,
n
t +
The term | is slightly different from the ¢; in (2.7). The only part

+ .
of the proof of Theorem 1 where (2.7) has been employed with Q; Z 0 is

. t
Temma 3.1. In such a lemma we estimated *a as

2 2v +

(ot = F7,t) === [ [ (v - = axds
a -t n
2 *p
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By following the varioug steps in the proof of Lemma 3,1 it is easily

checked that the extra term

1

> [ [ v - * >olaxar

min[ol,ﬂle QR

in (7.2) does not affect the result. BA few minor changes are necessary which
are left to the reader.
For the continuity up to the boundary the same arguments of section €& are

valid in the present situation. The proof is complete.
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